Nr 56 DOI:10.1515/fascmath-2016-0007

2016

B. Marzouki and A. El Haddouchi

GENERALIZED ALTERING DISTANCES AND FIXED POINT FOR OCCASIONALLY HYBRID MAPPINGS

ABSTRACT. In this work we are interested in the generalization of the result which is in the article [20]. To realize this, we weaken the two conditions that are: weakly altering distance and occasionally weakly compatible, then we neglect the distance altered because of some changes in theorem.

KEY WORDS: symmetric space, $(P_{(n,m)})$, (P^*) , occasionally weakly compatible, hybrid mappings, altering distance, common fixed point.

AMS Mathematics Subject Classification: 54H25, 47H10

1. Introduction

Let X be a nonempty set. A symmetric on X is a nonnegative real valued function d on $X \times X$ such that:

- (i) d(x,y) = 0 iff x = y,
- (ii) $d(x,y) = d(y,x) \ \forall x,y \in X.$

Let (X, d) be a metric (symmetric) space and B(X) the set of all nonempty bounded subset of X. As in [5], [6] we define the functions $\delta(A, B)$ and D(A,B), where $A,B\in B(X)$:

$$D(A,B) = \inf\{d(a,b)|a \in A, b \in B\},\$$

$$\delta(A,B) = \sup\{d(a,b)| a \in A, b \in B\}.$$

If $A = \{a\}$ then $\delta(A, B) = \delta(a, B)$. If $A = \{a\}$ and $B = \{b\}$ then $\delta(A, B) = \{a\}$ d(a,b). If follows immediately from the definition of δ that:

$$\delta(A,B) = \delta(B,A), \quad \forall A,B \in B(X).$$

If
$$\delta(A, B) = 0$$
 then $A = B = \{a\}$.

Definition 1. The hybrid pair $f: X \longrightarrow X$ and $F: X \longrightarrow B(X)$ is occasionally weakly compatible (owc) [1] if there exists $x \in X$ such that $fx \in Fx$ and $fFx \subset Ffx$.

Definition 2. Let $\mathcal{F}_{\mathcal{W}}$ be the set of all functions $\phi : \mathbb{R}^6_+ \longrightarrow \mathbb{R}$ satisfying the following conditions:

- (ϕ_1) ϕ is nonincreasing in variables t_2, t_5 and t_6 ,
- $(\phi_2) \ \phi(t, t, 0, 0, t, t) \ge 0, \ \forall t > 0.$

Example 1. $\phi(t_1,\ldots,t_6) = t_1 - \max\{t_2,\frac{1}{2}(t_3+t_4),\frac{1}{2}(t_5+t_6)\}.$

Example 2. $\phi(t_1,\ldots,t_6) = t_1 - h \max\{t_2,t_3,t_4,\frac{1}{2}(t_5+t_6)\}$, where $h \in]0,1[$.

Definition 3. A weakly altering distance is a mapping $\psi : [0, +\infty[\longrightarrow [0, +\infty[$ which satisfies:

- (i) ψ is increasing,
- (ii) $\psi(t) = 0$ if and only if t = 0.

Theorem 1 ([20]). Let f, g be self maps of the symmetric space (X, d) and F, G be maps of X into B(X) such that the pair (f, F), (g, G) are owc. If

(1)
$$\phi(\psi(\delta(Fx,Gy)),\psi(d(f(x),g(y))),\psi(D(Fx,fx)),\psi(D(g(y),Gy)),$$
$$\psi(\delta(f(x),Gy)),\psi(\delta(g(y),Fx)))<0$$

for all $x, y \in X$ for which $f(x) \neq g(y)$ where $\psi(t)$ is a weakly altering distance and $\phi \in \mathcal{F}_{W}$, then f, g, F and G have a unique common fixed point.

2. Generalized weakly altering distance and owc

Definition 4. The pair $f: X \longrightarrow X$ and $F: X \longrightarrow 2^X$, satisfies $(P_{n,m})$ if $\exists x \in X$ such that $f^m x \in Fx$ and $f^n x \in (Ff^{n-m}x) \cap (Ff^m x)$, with $n, m \in \mathbb{N}$ and n > m. $(f^0 x = x)$.

Remark 1. If f and F are owc, then (f, F) satisfies $(P_{2,1})$.

Example 3. Let $f:[0,1] \longrightarrow [0,1]$ and $F:[0,1] \longrightarrow B([0,1])$, such that

$$f(x) = \begin{cases} 1 \text{ if } x \in \{0, 1\} \\ 0 \text{ else} \end{cases} \quad \text{and} \quad Fx = \begin{cases}]0, 1] \text{ if } x \in \{0, 1\} \\ 0 \text{ else} \end{cases}$$

then $f(0) \in F0$ and $f^{3}(0) \in (Ff^{2}(0)) \cap (Ff(0))$, so (f, F) satisfies $(P_{3,1})$.

Definition 5. Let $\psi_i : [0, +\infty[\longrightarrow [0, +\infty[, i = 1, ..., 6 \text{ we say that } \psi_i \text{ satisfies } (P^*) \text{ if } : \forall t > 0, \forall j = 2, 5, 6, \psi_1(t) \geq \psi_j(t), \psi_j \text{ is increasing, } \psi_1(t) > 0, \text{ and } \psi_3(0) = \psi_4(0) = 0.$

Remark 2. A weakly altering distance satisfies (P^*) .

Example 4. Let $\psi_i: [0, +\infty[\longrightarrow [0, +\infty[, i=1, ..., 6, \text{ such that } :$

$$\psi_1(t) = te^t, \quad \psi_2(t) = t^3, \quad \psi_3(t) = \sin^2 t,$$

 $\psi_4(t) = t^2, \quad \psi_5(t) = t, \quad \psi_6(t) = \frac{t^2}{24}.$

3. Main results

Our motivation for the next result is to show that f, g, F and G may not have a common fixed point, but their iterates (or some of them) can have it. (see the example below).

Theorem 2. Let $f, g: X \longrightarrow X$ and $F, G: X \longrightarrow B(X)$ such that the pair (f, F), satisfies (P_{n_1,m_1}) , and (g, G) satisfies (P_{n_2,m_2}) . If

$$\left\{ \begin{array}{l} \forall (x,y) \in \{(a,b) \in X \times X, | f^{m_1}a \neq g^{m_2}b, \}, \exists \phi \in \mathcal{F}_{\mathcal{W}}, \ such \ that \\ \phi(\delta(Fx,Gy), d(f^{m_1}x, g^{m_2}y), D(f^{m_1}x, Fx), D(g^{m_2}y, Gy), \\ \delta(f^{m_1}x,Gy), \delta(Fx, g^{m_2}y)) < 0 \end{array} \right.$$

then $f^{n_1-m_1}, g^{n_2-m_2}, F$ and G have a unique common fixed point.

Proof. Since (f, F) satisfies (P_{n_1,m_1}) , and (g, G) satisfies (P_{n_2,m_2}) , there exists $x, y \in X$ such that $f^{m_1}x \in Fx$, $g^{m_2}y \in Gy$, $f^{n_1}x \in (Ff^{n_1-m_1}x) \cap (Ff^{m_1}x)$ and $g^{n_2}y \in (Gg^{n_2-m_2}y) \cap (Gg^{m_2}y)$. We prove that $f^{m_1}x = g^{m_2}y$. Suppose that $f^{m_1}x \neq g^{m_2}y$, then $0 < d(f^{m_1}x, g^{m_2}y) \leq \delta(Fx, Gy)$, so we deduce by (2) and (ϕ_1) that

$$\phi(\delta(Fx,Gy),\delta(Fx,Gy),0,0,\delta(Fx,Gy),\delta(Fx,Gy))<0,$$

witch is a contradiction of (ϕ_2) . Next we show that $f^{m_1}x = f^{n_1}x$. Suppose that $f^{m_1}x \neq f^{n_1}x$, then $0 < d(f^{n_1}x, f^{m_1}x) \leq \delta(Ff^{n_1-m_1}x, f^{m_1}x) = \delta(Ff^{n_1-m_1}x, g^{m_2}y) \leq \delta(Ff^{n_1-m_1}x, Gy)$, so by (2) and (ϕ_1) we obtain $\phi(\delta(Ff^{n_1-m_1}x, Gy), d(f^{n_1}x, g^{m_2}y), 0, 0, \delta(f^{n_1}x, Gy), \delta(Ff^{n_1-m_1}x, g^{m_2}y)) < 0$ and $\phi(\delta(Ff^{n_1-m_1}x, Gy), \delta(Ff^{n_1-m_1}x, Gy), 0, 0, \delta(Ff^{n_1-m_1}x, Gy), \delta(Ff^{n_1-m_1}x, Gy)) < 0$, which is a contradiction of (ϕ_2) . Hence, $f^{m_1}x = f^{n_1}x$ we have also, $g^{m_2}y = g^{n_1}y$. Consequently we deduce that $f^{n_1-m_1}f^{m_1}x = f^{m_1}x = g^{m_2}y = g^{n_2}y = g^{n_2-m_2}f^{m_1}x$, so $f^{m_1}x$ is a common fixed point of $f^{n_1-m_1}$ and $g^{n_2-m_2}$. On the other hand $f^{m_1}x = f^{n_1}x \in Ff^{m_1}x$, and $f^{m_1}x$ is a fixed

point of F. Similarly, $f^{m_1}x=g^{m_2}y=g^{n_2}y\in Gg^{m_2}y=Gf^{m_1}x$, and $f^{m_1}x$ is a fixed point of G.

Consequently $w=f^{m_1}x$ is a common fixed point of $f^{n_1-m_2},g^{n_2-m_2},F$ and G. Now we show that w is unique. Suppose that $w'\neq w$ is an other common fixed point of $f^{n_1-m_2},g^{n_2-m_2},F$ and G. Because $0< d(w,w')=d(f^{m_1}w,g^{m_2}w')\leq \delta(Fw,Gw')$, there exists $\phi\in\mathcal{F}_{\mathcal{W}}$, such that $\phi(\delta(Fw,Gw'),d(f^{m_1}w,g^{m_2}w'),D(f^{m_1}w,Fw),D(g^{m_2}w',Gw'),\delta(f^{m_1}w,Gw'),\delta(Fw,g^{m_2}w'))<0$. By (2) and (ϕ_1) deduce that $\phi(\delta(Fw,Gw'),\delta(Fw,Gw'),0,0,\delta(Fw,Gw'),\delta(Fw,Gw'))<0$, which is a contradiction of (ϕ_2) . so $w=f^{m_1}x$ is the unique common fixed point of $f^{n_1-m_2},g^{n_2-m_2},F$ and G.

Corollary 1. For n=2, m=1, $\psi(.)$ is a weakly altering distance and $\phi \in \mathcal{F}_{\mathcal{W}}$, let $\overline{\phi}(t_1, \underline{t}_2, t_3, t_4, t_5, t_6) = \phi(\psi(t_1), \psi(t_2), \psi(t_3), \psi(t_4), \psi(t_5), \psi(t_6))$, so it is clear that $\overline{\phi} \in \mathcal{F}_{\mathcal{W}}$, then by theorem 2 we obtain Theorem 1.

Corollary 2. Let $f, g: X \longrightarrow X$ and $F, G: X \longrightarrow B(X)$ such that the pair (f, F), satisfies (P_{n_1,m_1}) , and (g, G) satisfies (P_{n_2,m_2}) . If

(2)
$$\begin{cases} \forall (x,y) \in \{(a,b) \in X \times X, | f^{m_1}a \neq g^{m_2}b, \}, \exists (\psi_i)_{1 \leq i \leq 6} \\ which \ satisfies \ (P^*) \ and \ \phi \in \mathcal{F}, \ such \ that \\ \phi(\psi_1(\delta(Fx,Gy)), \psi_2(d(f^{m_1}x,g^{m_2}y)), \psi_3(D(f^{m_1}x,Fx)), \\ \psi_4(D(g^{m_2}y,Gy)), \psi_5(\delta(f^{m_1}x,Gy)), \psi_6(\delta(Fx,g^{m_2}y))) < 0 \end{cases}$$

then $f^{n_1-m_1}, g^{n_2-m_2}, F$ and G have a unique common fixed point.

Proof. Let $\overline{\phi}(t_1, t_2, t_3, t_4, \underline{t}_5, t_6) = \phi(\psi_1(t_1), \psi_2(t_2), \psi_3(t_3), \psi_4(t_4), \psi_5(t_5), \psi_6(t_6))$, then it is clear that $\overline{\phi} \in \mathcal{F}_{\mathcal{W}}$. So $(3) \Longrightarrow (2)$.

Example 5. Let $X = [0, 12], d(x, y) = (x - y)^2$, and

$$Fx = \begin{cases} \{1\} & \text{if } x \in]0,2[, \\ \{0\} \cup \{\frac{1}{4}\} & \text{if } x \in \{0\} \cup [2,12] \end{cases} \quad f(x) = \begin{cases} 2 & \text{if } x = 0, \\ 0 & \text{if } x = 1, \\ 1 & \text{if } x = 2, \\ 10 & \text{if } x = 12 \\ x + 8 & \text{if } x \in]0,1[\cup]1,2[, \\ 12 & \text{if } x \in]2,12[, \end{cases}$$

$$Gx = \begin{cases} \{0\} & \text{if } x \in [0,2], \\ [1,4] & \text{if } x \in]2,12] \end{cases} \qquad g(x) = \begin{cases} 0 & \text{if } x = 0, \\ 10 & \text{if } x = 12 \\ x+3 & \text{if } x \in]0,2], \\ 12 & \text{if } x \in]2,12[, \end{cases}$$

We have $f(0) \in F0$, $f^4(0) \in Ff^3(0) \cap Ff(0)$, $g(0) \in G0$ and $g^2(0) \in Gg(0)$, so (f, F) satisfies $(P_{(4,1)})$ and (g, G) satisfies $(P_{(2,1)})$. Put

$$R = \delta(Fx, Gy) - \max\{d(f(x), g(y)), \frac{1}{2}[D(f(x), Fx) + D(g(y), Gy)], \frac{1}{2}[\delta(f(x), Gy) + \delta(g(y), Fx)]\},$$

then we have the following situations:

1) If x = 0 and $y \in [0, 2]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= \frac{1}{16} \\ &< d(f(x),g(y)) \\ &\leq \max\{d(f(x),g(y)), \frac{1}{2}[D(f(x),Fx) + D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy) + \delta(g(y),Fx)]\}. \end{split}$$

2) If x = 0 and $y \in]2,12]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= 16 \\ &< \frac{1}{2} [\delta(f(x),Gy) + \delta(g(y),Fx)] \\ &\leq \max\{d(f(x),g(y)),\frac{1}{2} [D(f(x),Fx) + D(g(y),Gy)], \\ &\frac{1}{2} [\delta(f(x),Gy) + \delta(g(y),Fx)]\}. \end{split}$$

3) If $x \in]0,1[\cup]1,2[$ and y=0, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= 1 \\ &< \frac{(x+8)^2 + 1}{2} \\ &= \frac{1}{2} [\delta(f(x),Gy) + \delta(g(y),Fx)] \\ &\leq & \max\{d(f(x),g(y)),\frac{1}{2} [D(f(x),Fx) + D(g(y),Gy)], \\ &\frac{1}{2} [\delta(f(x),Gy) + \delta(g(y),Fx)]\}. \end{split}$$

4) If $x \in]0,1[\cup]1,2[$ and $y \in]0,2]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= 1 \\ &< (x-y+5)^2 \\ &= d(f(x),Gy) \\ &\leq \max\{d(f(x),g(y)),\frac{1}{2}[D(f(x),Fx)+D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy)+\delta(g(y),Fx)]\}. \end{split}$$

5) If $x \in]0,1[\cup]1,2[$ and $y \in]2,12[$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= 9 \\ &< \frac{D(g(y),Gy)}{2} \\ &\leq \frac{1}{2}[D(f(x),Fx) + D(g(y),Gy)] \\ &\leq \max\{d(f(x),g(y)),\frac{1}{2}[D(f(x),Fx) + D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy) + \delta(g(y),Fx)]\}. \end{split}$$

6) If x = 1 and $y \in]0, 2]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= 1 \\ &< d(f(x),g(y)) \\ &\leq \max\{d(f(x),g(y)),\frac{1}{2}[D(f(x),Fx)+D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy)+\delta(g(y),Fx)]\}. \end{split}$$

7) If x = 1 and $y \in]2, 12]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= 9 \\ &< d(f(x),g(y)) \\ &\leq \max\{d(f(x),g(y)),\frac{1}{2}[D(f(x),Fx)+D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy)+\delta(g(y),Fx)]\}. \end{split}$$

8) If x = 2 and $y \in [0, 2]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= \frac{1}{16} \\ &< d(f(x),g(y)) \\ &\leq \max\{d(f(x),g(y)), \frac{1}{2}[D(f(x),Fx) + D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy) + \delta(g(y),Fx)]\}. \end{split}$$

9) If x = 2 and $y \in [2, 12]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= \frac{1}{16} \\ &< d(f(x),g(y)) \\ &\leq \max\{d(f(x),g(y)),\frac{1}{2}[D(f(x),Fx)+D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy)+\delta(g(y),Fx)]\}. \end{split}$$

10) If $x \in [2, 12]$ and $y \in [0, 2]$, we get $f(x) \neq g(y)$ and

$$\begin{split} \delta(Fx,Gy) &= \frac{1}{16} \\ &< d(f(x),g(y)) \\ &\leq \max\{d(f(x),g(y)), \frac{1}{2}[D(f(x),Fx) + D(g(y),Gy)], \\ &\frac{1}{2}[\delta(f(x),Gy) + \delta(g(y),Fx)]\}. \end{split}$$

All the conditions of theorem 2 are satisfied with ϕ as in example 1, then 0 is the unique common fixed point of f^3 , g, F and G, but it is not a common fixed point of f, g, F and G.

4. Applications

Definition 6. We say that $h \in \mathcal{E}_{\mathcal{W}}$, if $h : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is locally integrable on $[0, +\infty[$ and satisfies $\int_0^{\epsilon} h(t)dt > 0$ for $\epsilon > 0$.

Lemma 1. The function $\psi(x) = \int_0^x h(t)dt$, were $h \in \mathcal{E}_W$ is an altering distance.

Theorem 3. Let $f, g: X \longrightarrow X$ and $F, G: X \longrightarrow B(X)$ such that the pair (f, F), satisfies (P_{n_1,m_1}) , and (g, G) satisfies (P_{n_2,m_2}) . If

$$(3) \begin{cases} \forall (x,y) \in \{(a,b) \in X \times X, | f^{m_1}a \neq g^{m_2}b, \}, \exists \phi \in \mathcal{F}_{\mathcal{W}} \text{ and} \\ (h_i)_{1 \leq i \leq 6} \subset \mathcal{E}_{\mathcal{W}} \text{ with } h_1 \geq h_i (i = 2, 5, 6) \text{ such that} \\ \phi \left(\int_0^{\delta(Fx,Gy)} h_1(t)dt, \int_0^{d(f^{m_1}x,g^{m_2}y)} h_2(t)dt, \int_0^{D(f^{m_1}x,Fx)} h_3(t)dt, \int_0^{D(g^{m_2}y,Gy)} h_4(t)dt, \int_0^{\delta(f^{m_1}x,Gy)} h_5(t)dt, \int_0^{\delta(Fx,g^{m_2}y)} h_6(t)dt \right) < 0 \end{cases}$$

then $f^{n_1-m_1}$, $g^{n_2-m_2}$, F and G have a unique common fixed point.

Proof. As in Lemma 1 we have

$$\psi_{1}(\delta(Fx,Gy)) = \int_{0}^{\delta(Fx,Gy)} h_{1}(t)dt$$

$$\psi_{2}(d(f^{m_{1}}x,g^{m_{2}}y)) = \int_{0}^{d(f^{m_{1}}x,g^{m_{2}}y)} h_{2}(t)dt$$

$$\psi_{3}(D(f^{m_{1}}x,Fx)) = \int_{0}^{D(f^{m_{1}}x,Fx)} h_{3}(t)dt$$

$$\psi_{4}(D(g^{m_{2}}y,Gy)) = \int_{0}^{D(g^{m_{2}}y,Gy)} h_{4}(t)dt$$

$$\psi_{5}(\delta(f^{m_{1}}x,Gy)) = \int_{0}^{\delta(f^{m_{1}}x,Gy)} h_{5}(t)dt$$

$$\psi_{6}(\delta(Fx,g^{m_{2}}y)) = \int_{0}^{\delta(Fx,g^{m_{2}}y)} h_{6}(t)dt.$$

Then, by (5), we have

$$\begin{cases} \forall (x,y) \in \{(a,b) \in X \times X, | f^{m_1}a \neq g^{m_2}b, \}, \exists (\psi_i)_{1 \leq i \leq 6} \text{ which satisfies } (P^*) \\ \text{and } \phi \in \mathcal{F}, \text{ such that} \\ \phi(\psi_1(\delta(Fx,Gy)), \psi_2(d(f^{m_1}x,g^{m_2}y)), \psi_3(D(f^{m_1}x,Fx)), \\ \psi_4(D(g^{m_2}y,Gy)), \psi_5(\delta(f^{m_1}x,Gy)), \psi_6(\delta(Fx,g^{m_2}y))) < 0 \end{cases}$$

The conditions of Corollary 2 are satisfied, so theorem 3 follows from Corollary 2.

For example, by Theorem 3 we obtain.

Corollary 3. Let $f, g: X \longrightarrow X$ and $F, G: X \longrightarrow B(X)$ such that the pair (f, F), satisfies (P_{n_1, m_1}) , and (g, G) satisfies (P_{n_2, m_2}) . If

$$\begin{cases} \forall (x,y) \in \{(a,b) \in X \times X, | f^{m_1}a \neq g^{m_2}b, \}, \exists \phi \in \mathcal{F}_{\mathcal{W}} \text{ and } h \in \mathcal{E}_{\mathcal{W}} \\ \text{such that} \\ \int_0^{\delta(Fx,Gy)} h(t)dt < \max\{\int_0^{d(f^{m_1}x,g^{m_2}y)} h(t)dt, \frac{1}{2}[\int_0^{D(f^{m_1}x,Fx)} h(t)dt \\ + \int_0^{D(g^{m_2}y,Gy)} h(t)dt], \frac{1}{2}[\int_0^{\delta(f^{m_1}x,Gy)} h(t)dt + \int_0^{\delta(Fx,g^{m_2}y)} h(t)dt] \end{cases}$$

then $f^{n_1-m_1}$, $g^{n_2-m_2}$, F and G have a unique common fixed point.

Proof. It is a consequence of theorem 3 by taking $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \max\{t_2, \frac{t_3 + t_4}{2}, \frac{t_5 + t_6}{2}\}$ and $h_1 = h_2 = \dots h_6 = h \in \mathcal{E}_{\mathcal{W}}$.

References

- [1] Abbas M., Rhoades B.E., Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings, *Pan Amer. Math. J.*, 18(2003), 56-62.
- [2] ALIOUCHE A., A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying contractive conditions of integral type, *J. Math. Anal. Appl.*, 322(2006), 796-802.
- [3] ALIOUCHE A., POPA V., Common fixed point for occasionally weakly compatible mappings via implicit relations, *Filomat*, 22(2)(2008), 99-107.
- [4] ALIOUCHE A., POPA V., General fixed point theorems for occasionally weakly compatible hybrid mappings and applications, *Novi Sad J. Math.*, 30(1)(2009), 89-109.
- [5] Al-Thagafi M.A., Shahzad N., Generalized I-nonexpansive maps and invariant approximations, *Acta Math. Sinica*, 24(5)(2008), 867-876.
- [6] BOUHADJERA H., GODET-THOBIE C., Common fixed point theorems for occasionally weakly compatible maps, Acta Math. Vietnamica, 36(1)(2011), 1-17.
- [7] Branciari A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, *Intern. J. Math. Math. Sci.*, 29(9)(2002), 531-536.
- [8] Fisher B., Common fixed points of mappings and set valued mappings, *Rostock Math. Kollock*, 18(1981), 69-77.
- [9] FISHER B., SESSA S., Two common fixed point theorems for weakly commuting mappings, *Period Math. Hungar*, 20(3)(1989), 207-218.
- [10] IMDAD M., KUMAR S., KHAN M.S., Remarks on some fixed points satisfying implicit relations, *Radovi Math.*, 1(2002), 135-143.
- [11] JUNGCK G., Compatible mappings and common fixed points, Intern. J. Math. Math. Sci., 9(1986), 771-779.
- [12] Jungck G., Common fixed points for noncontinuous nonself maps on a non-numeric space, Far. East J. Math. Sci., 4(2)(1996), 199-215.
- [13] Jungck G., Rhoades B.E., Some fixed point theorems for compatible mappings, *Intern. J. Math. Math. Sci.*, 16(1993), 417-428.
- [14] JUNGCK G., RHOADES B.E., Fixed point theorems for set valued functions without continuity, *Indian J. Pure Appl. Math.*, 29(3)(1998), 227-238.
- [15] JUNGCK G., RHOADES B.E., Fixed point theorems for occasionally weakly compatible mappings, *Fixed Point Theory*, 7(2)(2006), 287-297.
- [16] KHAN M.S., SWALEH M., SESSA S., Fixed point theorems by altering distances between points, Bull. Austral. Math. Soc., 30(1984), 1-9.
- [17] KOHLI J.K., WASHISTHA S., Common fixed point theorems for compatible and weak compatible mappings satisfying a general contractive condition, *Stud. Cerc. St. Ser. Mat. Univ. Bacãu*, 16(2006), 33-42.

- [18] Kumar S., Chugh R., Kumar R., Fixed point theorem for compatible mappings satisfying a contractive condition of integral type, *Soochow J. Math.*, 33(2007), 181-185.
- [19] Marzouki B., Mbarki A.M., Multivalued fixed point theorems by altering distances between the points, *Southwest J. Pure Appl. Math.*, 1(2002), 126-134.
- [20] Popa V., Patriciu A.-M., Altering distances, fixed point for occasionally hybrid mappings and applications, *Fasc. Math.*, 49(2012), 101-112.

B. Marzouki Département de Mathématiques et Informatique Faculté des Sciences Oujda, Maroc e-mail: marzoukib@yahoo.fr

A. EL HADDOUCHI
DÉPARTEMENT DE MATHÉMATIQUES ET INFORMATIQUE
FACULTÉ DES SCIENCES
OUJDA, MAROC

e-mail: elhaddouchi.abdelhak@gmail.com

Received on 21.11.2014 and, in revised form, on 03.12.2015.