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ABSTRACT. In this work we are interested in the generalization of
the result which is in the article [20]. To realize this, we weaken the
two conditions that are : weakly altering distance and occasionally
weakly compatible, then we neglect the distance altered because
of some changes in theorem.
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1. Introduction

Let X be a nonempty set. A symmetric on X is a nonnegative real valued
function d on X x X such that:

(i) d(z,y) = 0 iff = = y,

(7)) d(z,y) = d(y,z) Y,y € X.

Let (X, d) be a metric (symmetric) space and B(X) the set of all nonempty
bounded subset of X. As in [5], [6] we define the functions §(A, B) and
D(A, B), where A, B € B(X):

D(A, B) = inf{d(a,b)|a € A,b € B},

d(A, B) = sup{d(a,b)|la € A,b € B}.

If A= {a} then 6(A,B) =d(a,B). If A= {a} and B = {b} then 6(A, B) =
d(a,b). If follows immediately from the definition of ¢ that:

5(A,B) = 6(B,A), VA,B e B(X).

If 6(A,B) =0 then A= B = {a}.
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Definition 1. The hybrid pair f : X — X and F : X — B(X)
is occasionally weakly compatible (owc) [1] if there exists € X such that
fre Fx and fFx C Ffx.

Definition 2. Let Fy be the set of all functions ¢ : Ri — R satisfying
the following conditions :
(¢1) ¢ is nonincreasing in variables ta,t5 and tg,

(¢2) &(t,,0,0,¢,t) >0, Vt > 0.
Example 1. ¢(t1,...,t5) = t1 — max{ts, 2 (t3 + ta), 5(t5 + t6)}.

Example 2. ¢(t1,...,ts) = t1 — hmax{te, t3,t4, %(t{, + t6)}, where h €
10, 1].

Definition 3. A weakly altering distance is a mapping v : [0, +00[—>
[0, +00[ which satisfies:

(1) 1 is increasing,
(1) ¥ (t) = 0 if and only if t = 0.

Theorem 1 ([20]). Let f,g be self maps of the symmetric space (X, d)
and F,G be maps of X into B(X) such that the pair (f,F), (g9,G) are owc.

If

(1) o(P(6(Fz,Gy)),p(d(f(x),9(y)), P (D(Fz, fx)), b (D(g(y), Gy)),
P(0(f(x), Gy)), ¥ (0(g(y), Fr))) <0

for all z,y € X for which f(x) # g(y) where (t) is a weakly altering
distance and ¢ € Fw, then f, g, F and G have a unique common fixed
point.

2. Generalized weakly altering distance and owc

Definition 4. The pair f : X — X and F : X — 2% satisfies (Pym)
if 3 x € X such that f"x € Fx and f"z € (Ff" ™x) N (Ff™x), with
n,m €N andn >m. (f'r =z).

Remark 1. If f and F' are owc, then (f, F') satisfies (P1).
Example 3. Let f :[0,1] — [0,1] and F': [0, 1] — B([0, 1]), such that

1if 0,1 0,1] if 0,1
o {1re L [t e o)
0 else 0 else

then f(0) € FO and f3(0) € (Ff2(0)) N (F£(0)), so (f, F) satisfies (P31).
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Definition 5. Let v; : [0,4o00[— [0, 400, i = 1,...,6 we say that 1);
satisfies (P*) if : Yt > 0, Vj = 2,5,6, ¥1(t) > ¢;(t), ¢ is increasing,
Y1(t) > 0, and 13(0) = 4(0) = 0.

Remark 2. A weakly altering distance satisfies (P*).
Example 4. Let ¢; : [0, 4+00[— [0,4+00[, i = 1, ..., 6, such that :

Pi(t) =te', aha(t) =3, ahs(t) = sin’t,
t2

valt) =13, gs(t) =t Ye(t) = 5 .

3. Main results

Our motivation for the next result is to show that f, g, F and G may not
have a common fixed point, but their iterates (or some of them) can have
it. (see the example below).

Theorem 2. Let f,g: X — X and F,G : X — B(X) such that the
pair (f,F), satisfies (Pn, m,), and (g, G) satisfies (Ppym,). If

V(x,y) € {(a,b) € X x X,|f™a # ¢g"2b,},3p € Fyy, such that
O(6(Fx,Gy),d(f™ x, g™y), D(f™x, Fx), D(g™y, Gy),
S(f™a,Gy),d(Fz,g™y)) <0

then fm—"m gn2=m2 F gnd G have a unique common fixed point.

Proof. Since (f, F') satisfies (P, m,), and (g, G) satisfies (Py, m, ), there
exists z,y € X such that f™uz € Fx, g™y € Gy, fMz € (Ffm™zx)N
(FfmMg) and g"2y € (Gg™ ™2y) N (Gg"™2y). We prove that f™xz = g"M2y.
Suppose that f™ax # g2y, then 0 < d(f™x,g™y) < §(Fz,Gy), so we
deduce by (2) and (¢1) that

witch is a contradiction of (¢2). Next we show that f™xz = f™z. Sup-
pose that f™x # f™zx, then 0 < d(f™ax, fMzx) < §(FfMm—"g, fMy) =
S(Ffm—mg gmy) < 6(Ff™m ™z, Gy), so by (2) and (¢1) we obtain
P(O(F fr—™a, Gy), d(f™x,g™?y),0,0,0(f"x, Gy),S(Ff™ ™, g™?y)) <0
and ¢(0(F f"r~"™gz, Gy),0(F f™ "™z, Gy),0,0,5(F fm=" ¢ Gy),d(F fr—m
x,Gy)) < 0, which is a contradiction of (¢2). Hence, f™'x = f™z. we have
also, g™y = ¢g"'y. Consequently we deduce that f™ =" Mg = fMig =
gy = gMy = g"mT"M2 Mg go f™x is a common fixed point of f1T7M
and ¢g"27™2. On the other hand f™'z = f™x € Ff™z, and f™x is a fixed



114 B. MARZOUKI AND A. EL HADDOUCHI

point of F. Similarly, f™z = ¢"2y = g™y € Gg"™y = Gf™x, and f™z is
a fixed point of G.

Consequently w = f"™x is a common fixed point of f*1=m2 g"2=m2 [
and G. Now we show that w is unique. Suppose that w’ # w is an other
common fixed point of f™"1=™2 g"2=™2 [ and G. Because 0 < d(w,w’) =
d(f™w, g™ w') < §(Fw, Gw'), there exists ¢ € Fyy, such that ¢(6(Fw, Gw'),
d(fm™w, g™ w'), D(f™w, Fw), D(g™w', Gw'), 0 (f™w, Guw'), §(Fw, g™ w'"))
< 0. By (2) and (¢1) deduce that ¢(6(Fw, Gw'), §( Fw, Gw'), 0,0, §( Fw, Gw'),
d(Fw,Gw')) < 0, which is a contradiction of (¢2). sow = f™x is the unique
common fixed point of f"1~™2 g"27™2 [ and G. |

Corollary 1. For n =2, m = 1, ¢(.) is a weakly altering distance and

¢ € Fw, let ¢(t1,ta, t3,t4,t5,t6) = P(1p(t1),1h(t2), 1(ts), 1 (ts), ¥ (ts), ¥(ts)),

so it is clear that ¢ € Fyy, then by theorem 2 we obtain Theorem 1.

Corollary 2. Let f,g: X — X and F,G : X — B(X) such that the
pair (f,F), satisfies (Pn, m,), and (g, G) satisfies (Ppymsy). If

V(.I‘,y) S {(a7 b) € X x X, ‘fmla # g"?b, } ) El(wi)lfiﬁﬁ
which satisfies (P*) and ¢ € F, such that

¢(¢1(5(F$» Gy))v ¢2(d(fm1$, gm2y))7 1/}3(D(fmlx’ Fl‘)),
Ya(D(g™y, Gy)), ¥s(6(f™ z, Gy)), ¥e(6(Fz, g™?y))) <0

(2)

then fM—"™ g"2=m2 F and G have a unique common fixed point.

Proof. Let ¢(t1,t2,t3,ta,t5,t6) = p(1(t1), a(ta), ¥3(t3), Palta), ¥s(ts),
Ye(t6)), then it is clear that ¢ € Fyy. So (3) = (2). [ |

Example 5. Let X = [0,12], d(z,y) = (z — y)?, and

(

2 if x=0,
0 if z=1,
1} if = €]0,2], 1if 2=2,
g [ 1) 202 fo={ Lo
{oyu{z} if z€{0}uU(2,12] 10if =12
x+8 if z €]0,1[U]1,2],
12 if x €]2,12],
0 if z=0,
. (0} if zel0,2], @ 10 if =12
€r = Xr) = .
1,4 if ze2,12 7 r+3 if €)0,2],

12 if = €]2,12],
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We have f(0) € F0, f4(0) € Ff3(0) N EFf(0), g(0) € GO and ¢%(0) € Gg(0),
so (f, F') satisfies (P4,1)) and (g, G) satisfies (Py,1)). Put

R = 8(F, Gy) — max{d(§(2). (). 3 [D(f(z), F2) + Dlg(y), Gy,

1

S [0(f (@), Gy) +d(g(y), F)]},

then we have the following situations:
1) If z =0 and y € [0, 2], we get f(z) # g(y) and

1

< d(f(x), 9(y))
< wax{d(/ (), ), 51D(f (@), F) + Dlg(y), Gy,
1

2 [0(f(2), Gy) +0(g(y), F)l}-

2) If z =0 and y €]2,12], we get f(z) # g(y) and

§(Fz,Gy) = 16
< 3B @) Gy) +lg(y), Fo)
max{d(f(2). (). 5[D(f (@), F) + Dlg(y). G
1

5[0(f(2), Gy) +d(g(y), F)]}-

IN

3) If x €]0,1[U]1,2[ and y = 0, we get f(x) # g(y) and

0(Fz,Gy) = 1

z+8)%+1
< 2
= S0 (2),Gy) + S(g(y), F)
< max{d(f(2), 9(v)), 2 [D(f(x), Fx) + D(g(y), Gy)
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4) If = €]0,1[U]1, 2[ and y €]0, 2], we get f(z) # g(y) and

1

(& —y+5)

(S (2),G)
max{d(f(x), 9(v). 3 [D(f(x), Fa) + Dlg(y), Gy)),

1

5[0(f(z), Gy) +d(g(y), F)l}-

d(Fz,Gy)

A

IN

5) If x €]0,1[U]1,2[ and y €]2,12], we get f(z) # g(y) and

0(Fx,Gy) = 9
D(g(y), Gy)

IA
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6) If x =1 and y €]0, 2], we get f(z) # g(y) and

=1
< d(f(x),9(y))
<

max{d(f(2), 9(v)). 3 [D(f(2), F2) + Dlgly), Cv))
1

[0(f(2), Gy) +d(g(y), Fa)l}-

§(Fz,Gy)

7)If x =1 and y €]2,12], we get f(x) # g(y) and

0(Fz,Gy) = 9
< d(f(x),9(y))
1

< max{d(f(2),9(y)), 5 [D(f(2), Fz) + D(g(y), Gy)l,

1

S [0(f(2), Gy) +d(g(y), Fa)l}-
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8) If z =2 and y € [0,2], we get f(z) # g(y) and

(Fz,Gy) = %
< d(f(2),9(y))
< max{d(/ (), ), 51D(f (@), Fx) + Dlg(y), Gy,

1

5[0(f(2), Gy) +0(g(y), F)]}-

9) If x =2 and y €]2,12], we get f(z) # g(y) and

S10(f(2),Gy) +d(g(y), F)l}

10) If = €]2,12] and y € [0, 2], we get f(x) # g(y) and

S(Fz,Gy) = —

<
< max{d(f(x),9(v)), 5 [D(f(x), Fx) + D(9(y), Gy)l,
1

510(f(2), Gy) +d(g(y), F)l}-

All the conditions of theorem 2 are satisfied with ¢ as in example 1, then
0 is the unique common fixed point of f2, g, F and G, but it is not a common
fixed point of f, g, F' and G.

4. Applications
Definition 6. We say that h € Eyy, if h : Ry — Ry is locally integrable
on [0, +00[ and satisfies [y h(t)dt >0 for e > 0.

Lemma 1. The function (x) = [ h(t)dt, were h € Ey is an altering
distance.
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Theorem 3 Let f,g : X — X and F, G X —> B(X) such that the
V(ﬁ,y) € {(a,b) € X x X, Ifmla #9™b,},3¢ € Fy and
(hi)i<i<e C Ew with hy > hi(i = 2,5, 6) such that
O 6 (= maeyat, J59 5 mafeyde, [P ha(e)ar,
fOD(g’”?y,Gy) ha(t)dt, f(f(fmlcv,Gy £)dt f5(Fu’v,g 29}, he(t )dt) <0

then fM—"™_ g™~ F gnd G have a unique common fixed point.

Proof. As in Lemma 1 we have

(Fz,Gy)
1(0(Fzx, Gy)) :/0 hi(t)dt

Then, by (5), we have

V(z,y) € {(a,b) € X x X, |f™a # ¢g™b, },3(¢i)1<i<e¢ which satisfies (P*)
and ¢ € F, such that
o(r (3(Fa, Gy)), da(d(f ™, g™2y)), v(D(f™ z, Fx)),
Ya(D(g™2y, Gy)), ¥s(6(f™ x, Gy)), ve(6(Fx, g™2y))) <0
The conditions of Corollary 2 are satisfied, so theorem 3 follows from Corol-
lary 2. |

For example, by Theorem 3 we obtain.

Corollary 3. Let f,g: X — X and F,G : X — B(X) such that the
pair (f,F), satisfies (Pn, m,), and (g, Q) satisfies (Ppymsy). If
V(x,y) € {(a,b) € X x X,|f™a # ¢g"2b,},3p € Fyy and h € Eyy
such that
JOEREY) by < max{fo‘i(f’””’gmy) h(t)dt, S[[PY O b )
_|_f0D(gm2vay) h(t)dt], U‘ s(fmMx Gy)h dt—{—f (Fa,g™2y) h(t)dt]}
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then frM—™1 gn2="m2  F gnd G have a unique common fized point.

Proof. It is a consequence of theorem 3 by taking ¢(t1, to, t3,t4, t5, tg) =
tl—max{tg,%,%}andhlzhgz...h(;:hegw. [ |

References

[1] ABBAS M., RHOADES B.E., Common fixed point theorems for hybrid pairs
of occasionally weakly compatible mappings, Pan Amer. Math. J., 18(2003),
56-62.

[2] ALIOUCHE A., A common fixed point theorem for weakly compatible map-
pings in symmetric spaces satisfying contractive conditions of integral type, J.
Math. Anal. Appl., 322(2006), 796-802.

[3] ALIOUCHE A., Popa V., Common fixed point for occasionally weakly com-
patible mappings via implicit relations, Filomat, 22(2)(2008), 99-107.

[4] ALIOUCHE A., PopPA V., General fixed point theorems for occasionally weakly
compatible hybrid mappings and applications, Novi Sad J. Math., 30(1)(2009),
89-109.

[5] AL-THAGAFI M.A., SHAHZAD N., Generalized I-nonexpansive maps and in-
variant approximations, Acta Math. Sinica, 24(5)(2008), 867-876.

[6) BouHADJERA H., GODET-THOBIE C., Common fixed point theorems for
occasionally weakly compatible maps, Acta Math. Vietnamica, 36(1)(2011),
1-17.

[7] BRANCIARI A., A fixed point theorem for mappings satisfying a general con-
tractive condition of integral type, Intern. J. Math. Math. Sci., 29(9)(2002),
531-536.

[8] FISHER B., Common fixed points of mappings and set valued mappings, Ro-
stock Math. Kollock, 18(1981), 69-77.

[9] FisHER B., SESSA S., Two common fixed point theorems for weakly commut-
ing mappings, Period Math. Hungar, 20(3)(1989), 207-218.

[10] IMDAD M., KUMAR S., KHAN M.S., Remarks on some fixed points satisfying
implicit relations, Radovi Math., 1(2002), 135-143.

[11] JuNncok G., Compatible mappings and common fixed points, Intern. J. Math.
Math. Sci., 9(1986), 771-779.

[12] Juncek G., Common fixed points for noncontinuous nonself maps on a non-
numeric space, Far. East J. Math. Sci., 4(2)(1996), 199-215.

[13] Juncck G., RHOADES B.E., Some fixed point theorems for compatible map-
pings, Intern. J. Math. Math. Sci., 16(1993), 417-428.

[14] JuNGek G., RHOADES B.E., Fixed point theorems for set valued functions
without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238.

[15] Juncek G., RHOADES B.E., Fixed point theorems for occasionally weakly
compatible mappings, Fized Point Theory, 7(2)(2006), 287-297.

[16) KHAN M.S., SWALEH M., SESsA S., Fixed point theorems by altering dis-
tances between points, Bull. Austral. Math. Soc., 30(1984), 1-9.

[17] Konrr J.K., WASHISTHA S., Common fixed point theorems for compati-
ble and weak compatible mappings satisfying a general contractive condition,
Stud. Cerc. St. Ser. Mat. Univ. Bacdu, 16(2006), 33-42.



120 B. MARZOUKI AND A. EL HADDOUCHI

[18] KumaR S., CHUGH R., KUMAR R., Fixed point theorem for compatible
mappings satisfying a contractive condition of integral type, Soochow J. Math.,
33(2007), 181-185.

[19] MARZOUKI B., MBARKI A.M., Multivalued fixed point theorems by alter-
ing distances between the points, Southwest J. Pure Appl. Math., 1(2002),
126-134.

[20] Pora V., PaTrICIU A.-M., Altering distances, fixed point for occasionally
hybrid mappings and applications, Fasc. Math., 49(2012), 101-112.

B. MARZOUKI
DEPARTEMENT DE MATHEMATIQUES ET INFORMATIQUE
FACULTE DES SCIENCES
OuJpA, MAROC

e-mail: marzoukib@yahoo.fr

A. EL HADDOUCHI
DEPARTEMENT DE MATHEMATIQUES ET INFORMATIQUE
FACULTE DES SCIENCES
Ouibpa, MAROC

e-mail: elhaddouchi.abdelhak@gmail.com

Received on 21.11.2014 and, in revised form, on 03.12.2015.



